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a b s t r a c t

In this paper, the theory of bifurcations in piecewise smooth flows is critically surveyed. The focus is
on results that hold in arbitrarily (but finitely) many dimensions, highlighting significant areas where a
detailed understanding is presently lacking. The clearest results to date concern equilibria undergoing
bifurcations at switching boundaries, and limit cycles undergoing grazing and sliding bifurcations.
After discussing fundamental concepts, such as topological equivalence of two piecewise smooth
systems, discontinuity-induced bifurcations are defined for equilibria and limit cycles. Conditions for
equilibria to exist in n-dimensions are given, followed by the conditions under which they generically
undergo codimension-one bifurcations. The extent of knowledge of their unfoldings is also summarized.
Codimension-one bifurcations of limit cycles and boundary-intersection crossing are described together
with techniques for their classification. Codimension-two bifurcations are discussed with suggestions for
further study.
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1. Introduction

The theory of dynamical systems described by smooth ordinary
differential equations is well developed (see e.g. [1]) but, for many
systems of practical importance, the defining equations contain
discontinuities. In such cases, the theoretical underpinning of some
key results is uncertain.

In the gamut of dynamical systems with discontinuities, we
must be careful to fix the class of systems of interest. The most
general are hybrid systems, which are compounds of continuous
and discrete dynamics (e.g. differential equations and maps); see
for example [2–7]. Hybrid systems are too broad in scope to possess
a substantially general bifurcation theory as yet. An important
subclass of these are impact systems, where smooth evolution
by a differential equation can be interrupted by a map from a
discontinuity boundary to itself, such as the law of restitution for
mechanical impact [8–15]. Grazing solutions, where the impact
velocity is zero, provide insight into the dynamics near impact
bifurcations. Such grazing bifurcations can be studied by analysing
the local geometry of the impact manifold, using singularity
theory [16] and the so-called discontinuity maps [17].
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We restrict attention in this paper to a third important class,
that of piecewise smooth flows, consisting of differential equa-
tions that are piecewise smooth and have what Filippov calls ‘‘dis-
continuous righthand sides’’ [18]. Discontinuities are isolated to a
hypersurface, and unlike hybrid or impact systems, solutions are
generally continuous, and moreover, are smooth everywhere ex-
cept on the hypersurface. Our main interest is to describe the dy-
namical changes that result from invariant sets contacting such a
discontinuity hypersurface. We assume no restriction on the de-
gree of the discontinuity. If the systemvector field jumps across the
hypersurface then solutions may be non-differentiable there, ei-
ther crossing the surface, or sticking to and sliding along it [18]. The
latter is particularly challenging from a theoretical point of view,
because solutions with segments of sliding can be non-unique or
non-invertible.

Example. Consider an object moving on a surface with displace-
ment x and velocity u, subject to an elastic force −kx and Coulomb
friction−µ sign(u), whereµ is the coefficient of friction [19]. Then
x satisfies the piecewise smooth ordinary differential equations

ẋ = u,
u̇ = −kx − µ sign(u),
ṫ = 1.

(1)

During slipping, the friction force has fixedmagnitudeµ, and points
in the opposite direction to the velocity, switching at u = 0 to
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Fig. 1. The dry friction system (1). The friction force switches direction as u changes
sign. In phase space, orbits slide along the surface u = 0 (shaded)wheremechanical
sticking occurs. Note that ‘sliding’ here corresponds to mechanical ‘sticking’, where
u = 0, as opposed to ‘slipping’, where u ≠ 0.

give the phase portrait in Fig. 1. If the speed reaches u = 0 at a
time when |kx| > µ, then the object crosses from leftward slip to
rightward slip or vice versa, but, if |kx| < µ, the object sticks to
the surface. When this happens, solutions are said to ‘‘slide’’ along
u = 0 in the t-direction of the phase space (x, u, t), meaning that
the object sticks to the surface u = 0.

In this paper we survey the theory of bifurcations in piecewise
smooth flows from a critical perspective. Rather than providing
a comprehensive literature review, the aim is to summarize the
extent of current knowledge, gathering together the more general
results, and highlighting major areas requiring further work.

Piecewise smooth systems have been used for many years
by engineers and physicists, long before being comprehensively
formalized in mathematical terms. Perhaps as a consequence,
knowledge of bifurcations in piecewise smooth systems is largely
limited to specific examples, and does not yet approach the
generality of bifurcation theory in smooth systems. A major
obstacle to the development of a general theory is the inability
to extend results in two or three dimensional systems to n
dimensions, due to a lack of dimension reduction techniques,
such as centre manifolds or normal form theory. Nevertheless,
by drawing together results from the last half century within the
framework provided by the differential inclusions of Filippov [18],
the sewing (or ‘‘C ’’) bifurcations of Feigin [20], and the generic
singularities of Teixeira [21–23], we can begin the task of
developing a coherent picture of the theory of bifurcations in
piecewise smooth systems.

Piecewise smooth systems are now commonplace in models of
real world dynamics. They are frequently treated by ad hoc mod-
ifications of tools borrowed from smooth systems; reviews can
be found in [17,24–26]. A few of the wide range of applications
that exhibit piecewise smooth dynamics includemechanical prob-
lems of friction [27,19,28–31], switched feedback in control theory
[32–35] and electronics [36–40], nonsmooth models in eco-
nomics [41,42], ecology [43–45], neuron signalling [46–48],
genetic potentials [49–52], and novel nonlinear effects of super-
conductors [53,54]. Interest in such diverse applications amidst in-
sufficiently developed theory has left behind a nomenclature that
is dogged by semantic difficulties. This problem is bound to ease as
theoretical advances take hold, and rigorous definitions begin to
eliminate inconsistent uses of terminology. We shall pick our way
through the more concrete definitions and most useful terminolo-
gies, giving reference to the alternatives only where it is useful to
the discussion.

The layout of the paper is as follows. We first set out the
fundamentals: the definition of a piecewise smooth system and
its dynamics in Section 2, the forms of switching and sliding
boundaries in Section 3, and topological equivalence between
systems in Section 4. Then we introduce a geometrical treatment
of more general discontinuity-induced bifurcations in Section 5.
Existing results about the unfoldings of these bifurcations are
reviewed in Section 6, and we discuss where new results are
Fig. 2. A planar piecewise smooth system with four regions Ri, i = 1, 2, 3, 4,
separated by a switching boundary Σ , where the vector field jumps between the
values fi . The righthand side of the differential inclusion, F (grey line/area), is set-
valued on Σ , and its dimension depends on how many regions Σ is separating at
each point (a convex hull of 2 vectors, except at the intersectionwhere it is a convex
hull of 4 vectors). Vectors f1 and f3 are shown with black arrowheads, f2 and f4 are
shown with white arrowheads.

needed. Many results have been found for planar systems that
await generalization to n dimensions;we review these in Section 7.
By way of concluding remarks, we discuss some broader open
problems and peer into a possible future of piecewise smooth
dynamical systems in Section 8.

2. Dynamics of piecewise smooth systems

Definition 2.1. A piecewise smooth system consists of a finite set
of ordinary differential equations

ẋ = fi(x), x ∈ Ri ⊂ Rn, (2)

where the vector fields fi are smooth, defined on disjoint open
regions Ri, and are smoothly extendable to the closure of Ri.
Regions Ri are separated by an (n − 1)-dimensional set Σ called
the switching boundary, which consists of finitely many smooth
manifolds intersecting transversely. The union of Σ and all Ri
covers the whole state space D ⊆ Rn.

Away fromΣ , the existence and uniqueness theorems of Picard
and Lindelöf [55] ensure that solutions of (2) are well defined
provided each fi is sufficiently regular, but do not apply where the
vector field is discontinuous, namely onΣ . Following Filippov [18],
we overcome this problem by replacing (2) with a differential
inclusion,

ẋ ∈ F(x) (3)

where F = fi if x ∈ Ri, and F is set-valued if x ∈ Σ , given
by the convex hull of f1, . . . , fm when x lies on the boundary of
regions R1, . . . , Rm. A two dimensional inclusion with four regions
is illustrated in Fig. 2.

Then we can define solutions to (2) as follows:

Definition 2.2. An absolutely continuous function x(t), with t in
an open interval I , is a solution of (2) if and only if it satisfies the
differential inclusion (3) almost everywhere in I .

This definition is found in [18], along with the proof that, under
certain conditions, (at least) one solution passes through any point
x of system (2). Amore general discussion of differential inclusions
is found in [56]. Notice that solutions need not be unique, as shown
by the following example.
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Fig. 3. A pseudoequilibrium in a two-region system occurs where the two vector
fields point in opposite directions.

Example. Consider the one-dimensional system ẋ = sign(x),
where Σ is the point x = 0. The righthand side of the correspond-
ing differential inclusion is F = 1 where x > 0, F = −1 where
x < 0, and F = [−1, 1] at x = 0. Hence, at x = 0 the three so-
lutions x(t) = 0, x(t) = t , and x(t) = −t are admissible, as well
as any solution that remains in 0 for a finite time and then departs,
left or right, with unit speed.

As we see in the one-dimensional example above, a system may
admit constant solutions on a switching boundary. In general,
constant solutions of (2) come in two forms:

Definition 2.3. An equilibrium is a pointwhere fi(x) = 0 for some i.
A pseudoequilibrium is a point where 0 ∈ F(x), x ∈ Σ .

Example. In n-dimensions, let the vector field change between f1
(in R1) and f2 (in R2) across Σ . Then the differential inclusion (3)
becomes

ẋ ∈ F = {λf1 + (1 − λ)f2}, (4)

where λ = 1 in R1, λ = 0 in R2, and λ ∈ [0, 1] on Σ . By (4),
pseudoequilibria appear when f1 and f2 are linearly dependent and
point in opposite directions, as illustrated in Fig. 3.

Over the last thirty years, piecewise smooth systems have
been redefined a number of times in slightly different ways.
Definitions 2.1 and 2.2 are the simplest and most commonly
used among those considered in [18]. They are similar to another
definition, albeit restricted to two-dimensional systems, given
in [57]. The term pseudoequilibrium in Definition 2.3, introduced
in [58], is now quite standard in the literature.

3. Boundaries

To study the dynamical features that distinguish smooth and
piecewise smooth dynamical systems, we concentrate on the
geometry of solutions at or near the switching boundary Σ .
To this end, it is convenient to introduce three mathematical
tools: a function to describe Σ , a derivative to detect tangencies
between solutions and boundaries, and an explicit formula for the
component of F along Σ in the cases when it exists and is unique.

We represent Σ as the zero set of a scalar function h : Rn
→ R,

with
Σ = {x ∈ Rn

: h(x) = 0}. (5)
At points where Σ is a smooth hypersurface, we assume that h
is smooth and has nonzero gradient h,x (subscripts will denote a
derivative onlywhen preceded by a comma). Notice that the global
smoothness and differentiability of h is not a concern, since its
gradient will only be needed in local analysis.

We thenwrite the directional derivative of hwith respect to the
vector field in terms of Lie derivativesLfih = h,x ·fi. Them-th order
Lie derivative will be written as Lm

fi
h, e.g., L2

fi
h = Lfi(Lfih).

Definition 3.1. A sliding vector is any vector fs(x) ∈ F that lies
tangent to Σ for x ∈ Σ .
Fig. 4. A planar piecewise smooth vector field that switches between f1 in region
R1 and f2 in region R2 . At the switching boundary Σ we consider the inclusion F .
This gives sliding/escaping if F contains an element fs tangent to Σ , and crossing
otherwise.

According to Definition 2.2, solutions of system (2) that reachΣ
may cross through Σ if F contains no sliding vectors, or slide along
Σ if F contains a sliding vector. Thus the switching boundary is
partitioned into three different regions as follows.

Definition 3.2.
• In a crossing region, F contains no sliding vectors.
• In a sliding region, F everywhere contains at least one sliding

vector, and all neighbouring vector fields fi point towards Σ .
• In an escaping region, F everywhere contains at least one sliding

vector, and at least one of the neighbouring vector fields fi point
into its corresponding region Ri.

As an example of the definition for an escaping region, consider
Fig. 2: the boundary separating regions R1 and R2 is an escaping
region where f1 and f2 both point away from Σ , but the boundary
intersection is also an escaping region where f1 points away from
Σ but all others points towards it.

The distinction between sliding and escaping regions is impor-
tant: at a sliding region all solutions are confined to Σ in forward
time, while at an escaping region solutions may either continue
sliding or be ejected from Σ . Because of this dual nature of sliding
and escaping, they are sometimes referred to respectively as stable
and unstable sliding (see for example [59]).

Example. Consider the system

ẋ1 = sign(x2 + x21),
ẋ2 = 1, (6)

sketched in Fig. 4. The switching boundaryΣ is the curve x2 = −x21,
and we let R1 be the region above Σ , with R2 below. The righthand
side of the differential inclusion, F , is sketched in Fig. 4 with the
sliding vectors fs, and the corresponding dynamics is shown in
Fig. 5. The boundaries between crossing and sliding/escaping occur
at the tangencies T1 and T2, where the tangent vector to Σ , given
by (1, −2x1), lies along f1 and f2 respectively. Then escaping takes
place on Σ to the right of T2, and sliding to the left of T1.

In general, boundaries between crossing, sliding, and escaping
regions can occur either where Σ is nonsmooth, which we call
boundary intersections, or where Σ is smooth but tangent to one
of the fi, satisfying the tangency conditions
Lfih = 0. (7)

Away from boundary intersections, we can write the vector
field near a switching boundary h = 0 as

ẋ =


f1(x) if h(x) > 0,
f2(x) if h(x) < 0. (8)

The differential inclusion for (8) is then given by (4). A sliding
vector, from Definition 3.1, is the element of (4) tangent to Σ ,
which fixes λ = Lf1h(x)/(Lf2h(x) − Lf1h(x)), giving the sliding
vector field
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Fig. 5. The piecewise smooth dynamics corresponding to Fig. 4. The crossing region
is dashed. A sliding segment sticks to Σ in the sliding and escaping regions, which
are bounded by the tangency points T1, T2 .

Fig. 6. Basic tangencies between a piecewise smooth vector field and a switching
boundary: the fold, where the vector field has a quadratic tangency to Σ; the cusp,
where the vector field has a cubic tangency to Σ , and the sliding vector field has a
quadratic tangency to the sliding (or escaping) boundary; the two-fold, where the
vector field has a quadratic tangency to Σ on both sides. Sliding/escaping regions
are shaded, crossing regions are unshaded.

fs(x) =
Lf2h(x)f1(x) − Lf1h(x)f2(x)

Lf2h(x) − Lf1h(x)
, x ∈ Σ . (9)

Sliding or escaping occur when λ ∈ [0, 1], and hence the dynamics
in a sliding/escaping region is given by

ẋ = fs(x). (10)

As emphasized by Filippov [18] and Teixeira [23], tangencies
are central to understanding dynamics at a switching boundary
and, as we have seen, they form the boundaries between regions
of crossing, sliding, and escaping, onΣ . The three simplest types of
tangency that are encountered on smooth portions of Σ dividing
regions R1 and R2, are (see Fig. 6):

• the fold (quadratic tangency), where Lf1h = 0, while L2
f1
h ≠

0, Lf2h ≠ 0, and the gradient vectors of h and Lf1h are linearly
independent.

• the cusp (cubic tangency), where Lf1h = L2
f1
h = 0, while

L3
f1
h ≠ 0, Lf2h ≠ 0, and the gradient vectors of h, Lf1h and

L2
f1
h are linearly independent.

• the two-fold (double tangency), where Lf1h = Lf2h = 0, while
L2

f1
h ≠ 0, L2

f2
h ≠ 0, and the gradient vectors of h, Lf1h and

Lf2h are linearly independent.

The simplest tangency is the fold. Given a switching boundary
x1 = 0 (so h = x1) in coordinates x = (x1, x2) for a planar system,
a fold is defined [18] as the set x1 = x2 = 0 in the local normal
form

f1 = ±(s1x2, 1),
f2 = ±(1, 0), (11)

where s1 takes values ±1. This can be easily extended to n
dimensions by demanding that a fold has the normal form

f1 = ±(s1x2, 1, 0, . . .),
f2 = ±(1, 0, 0, . . .), (12)

where the dots denote a sequence of zeros. If s1 is positive [or
negative] then the flow in R1 curves away from [towards]Σ , which
Fig. 7. The fold as a boundary between escaping (full line) and crossing (dashed
line), illustrated in two dimensions. It can be either visible (left) or invisible (right).
By reversing arrows we would swap escaping for sliding.

we call a visible [invisible] fold. The region x2 < 0 on Σ is a sliding
region if we take the ‘+’ signs in (12), and an escaping region if we
take the ‘−’ signs; the latter is illustrated in Fig. 7. The case of a
visible fold at the boundary of a sliding region in three dimensions
is shown in Fig. 6.

Consider now the remaining tangencies listed in Fig. 6, namely
the cusp or the two-fold. Given again a switching boundary x1 = 0
and with dots denoting sequence of zeros, the cusp can be defined,
following [23], as the set x1 = x2 = x3 = 0 in the local normal
form

f1 = ±(x3 + s1x22, 1, 0, . . .),
f2 = ±(1, 0, 0, . . .), (13)

where s1 takes values ±1. There are branches of visible and
invisible folds along the x2 > 0 and x2 < 0 branches of x1 =

x3 + s1x22 = 0. Similarly to the fold, we can classify cusps either
as invisible or visible (following [59]), according to whether the
sliding flow curves towards (s1 = +1) or away from (s1 = −1)
the sliding boundary respectively. The cusp appears generically in
systems of three or more dimensions. The case of a visible case in
three dimensions is shown in Fig. 6.

The two-fold can be defined as the set x1 = x2 = x3 = 0 on a
switching boundary x1 = 0, in the local normal form

f1 = (s1x2, 1, a, . . .),
f2 = (s2x3, b, 1, . . .),

(14)

where the dots denote sequence of zeros, a and b are constants such
that the sliding vector field is structurally stable (requiring ab ≠ 1),
and the si are signs±1 determiningwhether the folds are visible or
invisible. This extends the three-dimensional normal forms given
in [18,23] to arbitrary dimensions. The fold along x2 = 0 is
visible [resp. invisible] if s1 is positive [negative], and the fold along
x3 = 0 is visible [invisible] if s2 is negative [positive]. The two-
fold appears generically in systems of three or more dimensions.
The visible–visible case (two visible folds) in three dimensions is
depicted in Fig. 6.

A general treatment of sliding boundary topology in n > 3
dimensions has not yet been carried out, but a basic understanding
of the fold, cusp, and two-fold is sufficient for many scenarios that
arise in the literature on piecewise smooth systems, and they will
play a major role in the remainder of this paper. We summarize
their coordinate independent defining conditions in Table 1.

In this section we discussed how tangencies form the bound-
aries of crossing/sliding/escaping, but they have a further role, as
points through which special solutions (equilibria, limit cycles,
etc.) can alter the topology of their intersection with the switching
boundary. Before we can discuss bifurcations in piecewise smooth
systems further, we must define the conditions under which two
piecewise smooth systems are topologically equivalent.

4. Equivalence of piecewise smooth systems

To discuss the topological properties of piecewise smooth
systemsweneed todistinguish betweendifferent types of solution.
Following a definition made in [57], we call a segment any smooth
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Table 1
Defining conditions of generic tangencies in n ≥ 3, given the system (8). In addition,
non-degeneracy requires that the gradients of the following quantities with respect
to x are linearly independent: h andLf1h for the fold; h, Lf1h andL2

f1
h for the cusp;

h, Lf1h and Lf2h for the two-fold. The derivatives in column three must also be
non-zero.

Tangency Definition Sliding/escaping, and visibility type

Fold Lf1h = 0 Visible if L2
f1
h > 0, invisible if

L2
f1
h < 0

Sliding if Lf2h > 0, escaping if
Lf2h < 0

Cusp
Lf1h = 0 Visible if (L3

f1
h)(Lf2h) < 0,

and Invisible if (L3
f1
h)(Lf2h) > 0

L2
f1
h = 0 Sliding if Lf2h > 0, escaping if

Lf2h < 0

Two-fold
Lf1h = 0 Visible-visible if L2

f1
h > 0 > L2

f2
h

and Invisible-invisible if L2
f1
h < 0 < L2

f2
h

Lf2h = 0 Visible-invisible if (L2
f1
h)(L2

f2
h) > 0

solution x(t) that is entirely contained in a region Ri or in a sliding
or escaping region, and defined for any open time interval t ∈ I .We
refer to maximal segments if I is maximal. In order to distinguish
between segments that slide on the switching boundary and
segments that lie in regions Ri, we call the former sliding segments
and the latter non-sliding segments. Finally, an orbit is a continuous
concatenation of closures of segments. We assume typically that
an orbit is maximal.

Because segments are solutions of a smooth vector field, max-
imal segments do not overlap in the state space, and therefore an
equivalence between systems can be defined segment-wise as a bi-
jection between sets of disjoint elements. Thus, we define the con-
cept of topological equivalence for piecewise smooth systems as
follows.

Definition 4.1. Two piecewise smooth systems are topologically
equivalent if there exists a homeomorphism sending maximal
segments of one system onto maximal segments of the other, pre-
serving the direction of time, and preserving whether a segment is
sliding, escaping, crossing, or not in contact with Σ .

A consequence of this definition of topological equivalence is
that switching boundaries are mapped to switching boundaries.
The same is true of alternative definitions of topological equiva-
lence, based on orbits rather than segments (and thus establishing
relations between sets of non-disjoint elements), given in [18,60,
17]. It has been pointed out in [61,62] that preservingΣ in thisway
makes a stronger restriction than is necessary to define a topolog-
ical equivalence (hence those authors call these Σ-equivalences).
A weaker topological equivalence can be defined which does not
preserve the switching boundary, but does preserve sliding; let
us call this ‘sliding equivalence’. Two examples are illustrated in
Fig. 8: the figures on each row are not topologically (Σ-) equiva-
lent by Definition 4.1, but are sliding equivalent. While useful from
a puremathematical perspective, this sliding equivalence does not
distinguish between systems with different crossing topologies.
The sliding equivalence is therefore inappropriate for applications
where crossing between different regions is of physical interest.
Because the intersection of orbits with the switching boundary
will be extremely important in later sections, we use exclusively
Definition 4.1.

Using Definition 4.1, we define the notion of bifurcation in a
piecewise smooth system as follows.

Definition 4.2. A bifurcation occurs if an arbitrarily small pertur-
bation produces a topologically non-equivalent system. The bifur-
cation is discontinuity-induced if it affects the state portrait in more
than one region, or in Σ .

A further distinction can be made if we describe discontinuity-
induced bifurcations as strong if they involve non-generic config-
uration of orbits with respect to switching boundaries, or weak if
Fig. 8. Piecewise smooth topological equivalences. Each row (i) and (ii) shows two
systems which are not topologically equivalent (‘Σ equivalent’) by Definition 4.1,
which respects dynamics in both the sliding (full line) and crossing (dashed line)
regions, but are ‘sliding equivalent’, which neglects the crossing region. In (i), orbits
cross Σ in one system but not in the other, while in (ii), the orbit tangent to Σ ,
shown bold, crosses in one system but not in the other.

the presence of a switching boundary is incidental and the bifurca-
tion can be treated using the mathematical tools of smooth maps
and flows [6]. The former of these will be our exclusive concern, as
they involve the switching boundary in a nontrivial way. Examples
of the latter include a cycle undergoing a bifurcation at a switching
boundary but expressible by a smooth Poincaré map throughout,
or a pseudoequilibrium undergoing a bifurcation of saddle–node
type of the smooth vector field fs.

5. Geometric overview of discontinuity-induced bifurcations

Weare now in a position to consider bifurcations involving local
and global dynamics. With very few exceptions, the discontinuity-
induced bifurcations that have beenmost analysed in the literature
are those affecting equilibria, pseudoequilibria, and limit cycles,
so we focus here on these. We will classify systems by studying
generic configurations of orbits, and define as generic any
configuration that satisfies a certain (finite) number of inequalities,
referred to as genericity conditions. Thus, away from boundary
intersections, considering a system defined as in (8), we have that
generically:

G1. if there exists an equilibrium x̄, it lies in the interior of a region
Ri, so that h(x̄) ≠ 0,

G2. if there exists a pseudoequilibrium x̄, it lies in the interior of a
sliding or escaping region, so that h(x̄) = 0 and Lfih(x̄) ≠ 0
for all i,

G3. if a non-sliding segment passing through a given point x ∉ Σ

reaches Σ at x̄, it does so in the interior of a sliding or crossing
region, so Lfih(x̄) ≠ 0 for all i,

G4. if a sliding segment passing through a given point x ∈ Σ

reaches a boundary of the sliding or escaping region at x̄, it
does so at a fold (so Lfih(x̄) = 0 and L2

fi
h(x̄) ≠ 0 for some i,

and Lfjh(x̄) ≠ 0 for all other j ≠ i).

These are illustrated in Fig. 9. A fifth case should be added here
about which very little is known, namely a sliding segment that
reaches a two-fold. This almost fits into G4 above, but violates the
condition Lfjh ≠ 0 for some j, and instead satisfies Lfjh = 0
with L2

fj
h ≠ 0. In three dimensions (see Fig. 10) it has been

shown that a sliding segment through a given point x ∈ Σ can
generically hit a two-fold [63], a fact which is not immediately
obvious, but follows because the possible topologies of the sliding
vector field (9) include, as one case, the phase portrait shown in
Fig. 10. Two-folds in higher dimensions have not been studied at
all (see Section 8). To highlight this open problem we include the
case that, generically:
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Fig. 9. Generic dynamics in a piecewise smooth system: G1 is an equilibrium away
from Σ , G2 is a pseudoequilibrium, G3 is a non-sliding segment hitting Σ away
from the boundary of sliding, G4 is a sliding segment hitting a fold transversely.
The sliding region is shaded, the crossing region is unshaded.

Fig. 10. Generic dynamics in a piecewise smooth system: G5 consists of an open
region of sliding segments that hit a two-fold. Sliding/escaping regions are shaded,
crossing regions are unshaded.

G5. if a sliding segment passing through a given point x ∈ Σ

reaches a boundary of the sliding or escaping region in a
scenario other than G4, it hits a two-fold.

G1–G5 do not provide a complete list of all the configurations
of orbits that are generic in piecewise smooth systems, but de-
scribe geometric rules that generically must be adhered to near a
switching boundary, by limit cycles and equilibria, in the absence
of boundary intersections. By violating any one of the inequalities
above we obtain a discontinuity-induced bifurcation. As stated in
Section 4, (strong) discontinuity-induced bifurcations imply non-
generic configurations of invariant sets and boundaries. Specif-
ically, bifurcations of equilibria or pseudoequilibria occur when
they collide with a switching or sliding boundary, violating G1–G2,
while bifurcations of limit cycles occur when a cycle intersects a
switching or sliding boundary non-generically, violating G3–G5.
Since the nature of these bifurcations is essentially geometric, ge-
ometry can be used to catalogue them. In the following section,
we firstly discuss codimension-one bifurcations, occurring when
one of the genericity conditions is violated, and then move on to
discuss a starting point for classifications of codimension-two bi-
furcations. In both cases, we address first bifurcations of equilibria
and pseudoequilibria, then those of limit cycles.

5.1. Codimension-one discontinuity-induced bifurcations

5.1.1. Equilibria and Pseudoequilibria
Discontinuity-induced bifurcations of equilibria and pseudoe-

quilibria occur whenever the genericity conditions G1 and G2 at
the start of Section 5 are violated, implying that an equilibrium
meets the switching boundary Σ , or a pseudoequilibrium meets
the boundary of a sliding or escaping region. These can happen in
two ways:

B1. the simultaneous collision of an equilibrium and a pseudoe-
quilibrium at the boundary of a sliding/escaping region, called
a boundary equilibrium,

B2. collision of a pseudoequilibrium with a two-fold.

It may not be immediately obvious that B1 and B2 should
be the only generic ways that a pseudoequilibrium can hit the
boundary of a sliding/escaping region, or that B1 should be the only
generic way an equilibrium can hitΣ . These are facts that have not
previously come to light in the literature. They are, however, an
immediate consequence of the generic local geometry, as we now
briefly explain.

Regarding B1, if an equilibrium, x̄, is a generic zero of f1 (without
loss of generality), then it lies at the intersection of a pair of curves
given by the following two sets of equations:

Lf1h(x) = L2
f1h(x) = · · · = Ln−1

f1
h(x) = 0, (15)

where n is the dimension of the system, i.e. x ∈ Rn, and

f1(x) = η(x)f2(x), (16)

for some scalar function η(x), with η(x̄) = 0. For x̄ ∈ Σ ,
these imply that a boundary equilibrium coincides with both a
pseudoequilibrium and an nth order tangency between f1 and Σ .
To see this, consider what happens if a system with x̄ ∈ Σ is
perturbed. There generically exist two points nearby, say xT ∈ Σ

and xP ∈ Σ , that satisfy (15) and (16) respectively; xT is an
n-th order tangency between the flow of f1 and Σ , and xP is a
pseudoequilibrium of fs if η < 0 (if η > 0 it is a crossing point).
The sign of η at xP changes as the equilibrium passes through it,
and therefore the inequality η < 0 is always satisfied – and a
pseudoequilibrium exists – on one side of the bifurcation. The nth
order tangency at xT , satisfying (15), persists on both sides of the
bifurcation. Part of this analysis is contained, with further details,
in [64].

Regarding B2, at a pseudoequilibrium (16) must be satisfied.
If the pseudoequilibrium collides with the boundary of its
sliding/escaping region, then either f1 or f2 vanishes, which is the
boundary equilibrium bifurcation B1, or both f1 and f2 are tangent
to the switching boundary, which occurs at folds. Generically,
these intersect transversely and form a two-fold. This bifurcation
has been studied for the first time in [65] in three-dimensional
systems, but an n-dimensional analysis has not yet been carried
out.

The conditions that must be satisfied for B1 and B2 to be
generic have not been rigorously studied in n-dimensions, (with
a few exceptions, see Section 5.2.1). However, the discussion
above implies that B1 and B2 must satisfy the following genericity
conditions:

B1. the equilibrium and pseudoequilibrium are hyperbolic, hit the
boundary transversely and, letting the equilibrium belong to
R1 without loss of generality, then the equilibrium hits Σ

where Lf2h ≠ 0, and where the gradient vectors of h and each
Lm

f1
h(x) form = 1, . . . , n − 1, are linearly independent,

B2. the pseudoequilibrium is hyperbolic, crosses from sliding to
escaping regions, and does so where L2

f1
h ≠ 0 and L2

f2
h ≠ 0.

We discuss the unfoldings of these in Section 6.1.

5.1.2. Limit cycles
Discontinuity-induced bifurcations of limit cycles occur when

conditions G3 and G4 at the start of Section 5 are violated. This
happens when:

B3. a non-sliding segment of a cycle reaches a boundary at a fold
point.

B4. a sliding segment of a cycle reaches a boundary of the
sliding/escaping region at a cusp.

These both involve a limit cycle grazing (being quadratically
tangent to) a boundary: a non-sliding segment grazing Σ in B3,
and a sliding segment grazing the sliding/escaping boundary in B4.
The list is clearly incomplete. If we relax the genericity condition
G4, either L2

f1
h ≠ 0 is violated in which case we can obtain B4

above, or Lf2h ≠ 0 is violated in which case the cycle intersects
a two-fold. At first this appears to be in contradiction to the
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Fig. 11. Generic dynamics in a piecewise smooth system. Except in the case G5
(Fig. 10), a limit cycle will not generically hit a two-fold, but may do so as a
parameter µ is varied.

case G5 in Section 5. However, it is known in three dimensions
(see for example [18,23,59,65]) that, depending on the topology
of the sliding vector field, such an intersection can occur, either
generically (as in Fig. 10) or in the unfolding of a one-parameter
bifurcation (as in another case of the two-fold, shown in Fig. 11).
We thereforemust add, as we did in Section 5, a speculative case of
codimension-one discontinuity-induced bifurcation of limit cycles,
that occurs when:

B5. a sliding segment of a cycle reaches a boundary of the
sliding/escaping region at a two-fold.

The codimension-one bifurcation scenarios B3–B5 are known in
the literature as sliding bifurcations. In [17,66] four types of sliding
bifurcation are found, under the hypothesis that the bifurcating
cycle has no sliding or escaping segments away from the tangency
to Σ . In [59] the local geometry is analysed, revealing that four
additional scenarios of sliding bifurcations involving escaping
regions are possible. We introduce unfoldings for all of these in
Section 6.2.

Similarly to B1–B2, the conditions that must be satisfied for
B3–B5 to be generic have not been rigorously studied in n-
dimensions. However, a brief inspection suggests that they should
satisfy the following genericity conditions:

B3. the cycle is hyperbolic, and does not involve non-generic
intersections outside the neighbourhood of the fold, where
L2

f1
h ≠ 0, Lf2h ≠ 0,

B4. the cycle is hyperbolic, and does not involve non-generic
connections outside the neighbourhood of the cusp, where
L3

f1
h ≠ 0, Lf2h ≠ 0.

For case B5 there is insufficient theory to speculate about genericity
conditions in n dimensions, other than that the cycle should not
involve non-generic intersections outside the neighbourhood of
the two-fold.

5.2. Codimension-two discontinuity-induced bifurcations

The genericity conditions in the previous section suggest that
certain codimension-two bifurcation scenarios are also possible.
which have come to light in specific circumstances.

5.2.1. Equilibria and pseudoequilibria
Codimension-two discontinuity-induced bifurcations of equi-

libria and pseudoequilibria occur whenever the genericity condi-
tions for B1 and B2 in Section 5.1.1 are violated. Considering first
B1, this can happen in four ways:

B1.1. the equilibrium or pseudoequilibrium is nonhyperbolic
when it hits the boundary,

B1.2. the equilibrium or pseudoequilibrium grazes (is quadrati-
cally tangent to) the boundary,

B1.3. an equilibrium of f1 hits the boundary where f2 is tangent to
Σ ,
B1.4. the equilibrium collides with a point of tangency of order
n + 1.

Considering B2, the genericity conditions can be violated in three
ways:

B2.1. the pseudoequilibrium is nonhyperbolic when it hits the
two-fold,

B2.2. the pseudoequilibrium grazes the two-fold,
B2.3. a pseudoequilibrium collides with a cusp.

Unfoldings for these will be discussed in Section 6.3.

5.2.2. Limit cycles
The genericity conditions B3–B5 in Section 5.1.2 can be violated

in three essentially differentways,whichwere classified in [67] as:

Type I: the inequalities on Ln
fi
h are violated,

Type II: the cycle is nonhyperbolic or has homoclinic/heteroclinic
connections to equilibria/pseudoequilibria,

Type III: the cycle has more than one grazing with a switching
boundary, or boundary of a sliding/escaping region.

Unfoldings for these will be discussed in Section 6.4.

5.3. Boundary-intersection crossing bifurcations

Dynamics of a piecewise smooth system at a boundary intersec-
tion can be rather complex. One reason for this is that the set F in
(3) may contain an infinite number of vectors lying in the tangent
space of the boundary intersection. Attempts to define simplified
dynamics in such cases have been made in [68–70]. In the pres-
ence of a transverse intersection between finitely many switch-
ing boundaries, the genericity conditions listed at the beginning of
Section 5 must be amended:

G̃1. if there exists an equilibrium x̄, it lies in the interior of a region
Ri, so that h(x̄) ≠ 0,

G̃2. if there exists a pseudoequilibrium x̄, it lies either: in the
interior of a sliding or escaping region, away from tangencies
(e.g. folds and cusps), or at a boundary intersection.

G̃3. if a non-sliding segment passing through a given point x ∉ Σ

reaches Σ at x̃, it does so in the interior of a sliding or crossing
region, away from tangencies and boundary intersections,

G̃4. if a sliding segment passing through a given point x ∈ Σ

reaches a boundary of the sliding or escaping region, it does so
at a fold, a two-fold, or at an intersection between two smooth
portions of Σ .

These suggest themselves as reasonable conditions for genericity
in the presence of boundary intersections, but it has not yet
been proven that they are sufficient. Furthermore, bifurcations
obtained by violating conditions G̃1, G̃2, or G̃4, appear to have
never been studied. All existing results concern the violation of
conditions G̃3, when a non-sliding segment of a limit cycle reaches
a boundary intersection. In this case, we must assume that the
cycle is hyperbolic, involves only generic intersections outside
the neighbourhood of the boundary intersection, that none of the
neighbouring vector fields is tangent to any one of the two smooth
portions of Σ , and that the intersection involves only two smooth
portions of Σ .

As this stage, the available results on bifurcations involving
boundary intersections are insufficient to provide a list of the
possible codimension-two bifurcations.

6. Unfoldings

Following on from the methods used to define the bifurcation
scenarios in Section 5, we begin to unfold them by analysing
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Fig. 12. The persistence and nonsmooth fold scenarios of boundary equilibrium
bifurcations. In any number of dimensions, the functions f1(x) and f2(x) are linearly
dependent along a one dimensional curve (dashed) given by (16). If this intersects
the sliding region (shaded) then a pseudoequilibrium exists, while an equilibrium
exists if γ > 0.

the local geometry. Most examples of unfoldings in the literature
analyse specific systems in low dimensions, and few have been
studied in a way that generalizes to n dimensions. In this section
we focus only on the discussion of unfoldings that apply in n
dimensional piecewise smooth systems.

6.1. Codimension-one bifurcations of equilibria

6.1.1. B1: The boundary equilibrium bifurcation
From (16) we have two possible scenarios:

• Persistence, where an equilibrium turns into a pseudoequilib-
rium.

• Nonsmooth Fold, where an equilibriumand a pseudoequilibrium
meet at the boundary and annihilate.

These are illustrated in Fig. 12, and analytic conditions that
discriminate between the two scenarios can be derived from the
local geometry as follows. Assume that the vector fields and the
switching boundary depend on a real parameter γ , so f1 =

f1(x; γ ), f2 = f2(x; γ ), h = h(x; γ ). Then assume, without loss
of generality, that f1 has an equilibrium at x = 0, undergoing a
boundary equilibrium bifurcation when γ = 0, and that h > 0 in
R1 and h < 0 in R2. Writing the Jacobian matrix of fi as fi,x, we have
that:
• if h,x(0; 0)[f1,x(0; 0)]−1f2(0; 0) > 0, there is persistence at

γ = 0,
• if h,x(0; 0)[f1,x(0; 0)]−1f2(0; 0) < 0, there is a nonsmooth fold

at γ = 0.

These conditions are derived as follows. For nonzero γ , a point
x̄ ∈ Σ is a pseudoequilibrium if it satisfies (16) with µ < 0 and it
lies on Σ , hence it satisfies:

f1(x̄, γ ) = µf2( ¯x, γ ), µ < 0,
h(x̄, γ ) = 0. (17)

Near the origin and for small γ , we can approximate fi and h by
f1 ≈ f1,x(0; 0)x + f1,γ (0; 0)γ , f2 ≈ f2(0; 0), and h ≈ h,x(0; 0)x +

h,γ (0; 0)γ . The quantity f1,γ (0; 0)γ is identically zero since f1(0)
is constant. Then, (17) can be simplified to

f1,x(0; 0)x = µf2(0; 0), µ < 0,
h,x(0; 0)x = −h,γ (0; 0)γ ,

(18)

whose solution is

x = µ[f1,x(0; 0)]−1f2(0; 0),

µ =
−h,γ (0; 0)γ

h,x(0; 0)[f1,x(0; 0)]−1f2(0; 0)
.

(19)

The genericity conditions B1 in Section 5.1.1 ensure that these
expressions are well defined. The pseudoequilibrium exists only
Fig. 13. Persistence (k > 0) and nonsmooth-fold (k < 0). Phase portraits of (20)
with a switching boundary at x2 = −γ , a sliding region over x1 < 0 (full line)
and crossing over x1 > 0 (dashed line). Equilibria (E) lie at (x1, x2) = (0, 0) and
pseudoequilibria (P) at (x1, x2) = γ (k, −1).

whenµ in (19) is negative,while for our choice of h the equilibrium
exists (belongs to R1) only when h(0, γ ) ≃ h,γ (0; 0)γ > 0, giving
the conditions as above.

Example. Let

f1 = (x1 + kx2, x1),
f2 = (0, 1), (20)

and h = x2 + γ , then k > 0 gives persistence, while k < 0 gives
a nonsmooth fold, as γ passes through zero. Applying (9) gives
fs = (x1 − kγ , 0)/(1 − x1) (see Fig. 13).

The classification into persistence and nonsmooth fold cases
can alternatively be obtained algebraically, by linearizing the
vector fields f1 and fs about the boundary equilibrium point,
and considering the characteristic polynomials of their respective
Jacobians. Such analysis can be found in [71,72], where Feigin’s
classification [73] for fixed points of piecewise smooth maps was
extended to flows.

The distinction into persistence/nonsmooth fold cases above
does not give a full account of the nearby dynamics, and indeed
none is known. For planar systems, it is known that branches
of limit cycles (and even chaotic attractors) can emerge from
boundary equilibrium bifurcation points, see Section 7.2, though
at present there are no tools known for generalizing these results
to n dimensions.

6.1.2. B2: a pseudoequilibrium traversing a two-fold
No study of bifurcations involving pseudoequilibria passing

between sliding and escaping regions at two-folds have beenmade,
to our knowledge, in n > 3 dimensions (reference is made in [18]
to a paper [74], however, that applies point mapping techniques to
study two-folds in higher dimensions). The leading order dynamics
near a two-fold in three dimensions was studied in [18,23,65],
where the codimension-one bifurcation of a pseudoequilibrium,
passing between sliding and escaping regions via a two-fold, is a
consequence of higher order analysis briefly introduced in [65],
with a deeper analysis forming the subject of [63]. An illustrative
example taken from that paper is shown in Fig. 14, where a
branch of non-sliding limit cycles appears as a pseudoequilibrium
traverses the two-fold. For n dimensional systems, the bifurcation
B2 takes place when f1 and f2 are antiparallel at some point on the
two-fold, but little else is known.

6.2. Codimension-one bifurcations of limit cycles

In a smooth vector field, the codimension-one bifurcations that
can affect limit cycles have been shown to be few in number and
are well understood (see e.g. [1]). This success appears unlikely to
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Fig. 14. The passage of a pseudoequilibrium through a two-fold in three
dimensions. A pseudonode in the sliding region becomes a pseudosaddle in the
escaping region. A non-sliding limit cycle (existing either for γ > 0 or γ < 0)
is also created in the bifurcation. The bifurcation parameter γ is the quantity
1 − (Lf1Lf2h)(Lf2Lf1h)(Lf1Lf1h)

−1(Lf2Lf2h)
−1 evaluated at the two-fold, and

vanishes when f1 and f2 are antiparallel there. Such a cycle is shown for γ < 0.
A second scenario is obtained by reversing the direction of time.

Fig. 15. The four sliding bifurcations. Three of these take place when a non-
sliding segment hits a fold, and are called: grazing, crossing, and switching–sliding
bifurcations. The fourth takes place when a sliding segment hits a cusp, and is
called an adding–sliding bifurcation. A continuous change of initial condition gives
a continuous change in the orbit topology, and in the orbit’s interaction with the
switching boundary.

be replicated in piecewise smooth systems, as is already clear from
themany codimension-one bifurcations known in two-dimensions
(see Section 7.1). To make headway into the general study of
global discontinuity-induced bifurcations, new tools are likely to
be needed. At the moment, the most promising approaches are
based on a local analysis at the switching boundary, and exploit
the fact that discontinuity-induced bifurcations correspond to a
non-generic configuration of segments, specifically, in the case of
a limit cycle, at points where the flow is tangent to the switching
boundary.

As we saw in Section 5.1.2, a cycle undergoes a sliding bifurca-
tion when one of its segments reaches a fold (B3), a cusp (B4), or a
two-fold (B5). A classification of the possible bifurcation scenarios
is made possible by analysing the geometry of the flow near these
points. In [59], all structurally stable configurations of orbits orig-
inating from a continuous one-parameter set of initial conditions
near a fold, cusp, or two-fold, are identified. These classify the lo-
cal flow into a small set of topological classes based on the type of
tangency. Figs. 15 and 16 portray these configurations. Eight dual
scenarios, describing families of orbits terminating at a continuous
one-parameter set of final conditions, are obtained by reversing ar-
rows in the figures. The configuration in Figs. 15(i)–(iii) and 16(i)
take place at a fold, Fig. 15(iv) at a cusp, and Fig. 16(ii)–(iv) at a
two-fold.

To link these portraits with the orbit geometry of bifurcating
cycles, it suffices to decompose the Poincaré map for the
bifurcating cycle into local and a global parts as follows. Take a
small neighbourhood B of the tangency point (see Fig. 17), and a
Poincaré section on the boundary of B, then the Poincaré map can
be written as the composition of two maps, β(x, γ ) describing the
flow in B, and φ(x, γ ), describing the flow outside B. Both maps
depend on the bifurcation parameter γ . Consider a cycle satisfying
one of the bifurcation conditions in (B3), (B4) or (B5), for γ = γ̄ ,
and call x̄ an intersection of the cycle with the boundary of B.
Existence of the cycle ensures that the image of the couple (x̄, γ̄ )
Fig. 16. The four catastrophic sliding bifurcations. These include one case that
occurs when a non-sliding segment hits a fold, called a catastrophic grazing–sliding
bifurcation. The others take place when a sliding segment hits a two-fold, and are
called visible, simple, and robust canards.

Fig. 17. Local analysis of a limit cycle at a discontinuity. Take a neighbourhood B of
the cycle’s intersection with the switching boundary Σ , and a Poincaré map on the
section Π , then decompose the map into a local part β inside B, and a global part φ

outside.

under one of four, possibly set-valued, functions, given by

φ(β(x, γ ), γ ) − x, (21)

φ−1(β−1(x, γ ), γ ) − x, (22)

φ(x, γ ) − β−1(x, γ ), (23)

φ−1(x, γ ) − β(x, γ ), (24)

always contains zero. Then the existence of a family of cycles can
be discussedwith the help of the Implicit Function Theoremwhen-
ever one of the functions (21)–(24) is smooth and single-valued.
The details of this reasoning are summarized in Section 6.2.2, here
we summarize the basic results as follows:

• If (21) or (22) is single-valued at (x, γ ) = (x̄, γ̄ ), then the
bifurcating cycle belongs to a family parametrized by γ , with
geometry near the tangency as in Fig. 15. Notice that the two
branches of the family originating at γ = γ̄ may exist on either
side of γ̄ , or on the same side. This produces persistence and
nonsmooth fold scenarios, as explained in Section 6.2.1.

• If (21) and (22) are set-valued at (x, γ ) = (x̄, γ̄ ), but (23)
or (24) is single-valued, then either a one-parameter family
of cycles coexists for γ = γ̄ , with geometry as in Fig. 15,
or the bifurcating cycle disappears as γ is changed, following
the scenario in Fig. 16(i). When these conditions hold, orbits
near the bifurcating cycle contain both sliding and escaping
segments.

• If (21)–(24) are all set-valued at (x, γ ) = (x̄, γ̄ ), then either
φ and φ−1 are both set-valued, and no local analysis can be
done, or β and β−1 are both set-valued, which means that the
cycle is touching a two-fold, following one of the scenarios in
Fig. 16(ii)–(iv).

One should note that the portraits in Figs. 15 and 16 can
be considered as showing the local geometry of sets other than
limit cycles, such as one-dimensional stable manifolds [75], one
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Fig. 18. Examples of: (i) a persistent grazing–sliding bifurcation, and (ii) a
catastrophic grazing–sliding bifurcation. In (i), a cycle gains a sliding segment, and
the cycle is smooth away fromΣ , so it can be described by an invertible returnmap
to the Poincaré section Π . In (ii), a cycle is abruptly destroyed, and the cycle has a
sliding segment S, which lies away from the grazing point G where the bifurcation
occurs, therefore it has no invertible return map.

Fig. 19. Near a tangency, the state space is divided into two regions with different
orbit topologies, depending on their intersection with Σ . In the hatched region
the flow induces a map β = βSM , while elsewhere the flow induces a map β =

βSM ◦ βDM .

dimensional separatrices, etc., though such extensions are beyond
the scope of this section.

The key observation here, that study of discontinuity-induced
bifurcations of a limit cycle can be reduced to local geometry, is
attributable to Nordmark’s pioneering work on grazing bifurca-
tions in impact and friction oscillators (see [76,28]). An extension
to sliding bifurcations was presented in [66], where maps are de-
rived that correct for the presence of the discontinuity when ap-
plied to a smooth flow continued from one side of the switching
boundary. These discontinuity maps are, however, limited to cases
where the cycle encounters no more than one sliding or escaping
region, as in Fig. 18(i). In such cases they allow us to determine the
differentiability of the Poincaré map, and hence determine what
kinds of global bifurcations the cases in Fig. 15 will give rise to. The
effect of encountering a second sliding or escaping region opens
up the possibility of the cases in Fig. 16. For example, Fig. 18(ii)
shows an instance of the catastrophic grazing–sliding bifurcation
from Fig. 16(i) when a cycle encounters both sliding and escaping
regions.

6.2.1. B3–B4: discontinuity maps at a fold or cusp
Consider the configurations in Fig. 15. In all scenarios, as noted

above, the neighbourhood B can be divided into two parts where
the sequence of segments composing an orbit takes a qualitatively
different form, such as those hatched and unhatched in Fig. 19.
Consequently, the map β takes two different functional forms in
the two regions. In the literature, and as illustrated in Fig. 19, it
is common therefore to decompose β into a smooth part, βSM ,
which is the same in both regions, and a piecewise-smooth part,
βDM, which is the identity on one region (shaded in Fig. 19). Then
β = βSM ◦ βDM, and βDM is the discontinuity map.

If φ and β or φ−1 and β−1 are single-valued, the analysis of
the dynamics near the bifurcating cycle can be reduced to the
analysis of a Poincaré map φ ◦ β or β−1

◦ φ−1. These are the
cases associated with the scenarios in Fig. 15. If φ is also invertible,
the differentiability of the Poincaré map depends only on the
properties of β , and thus of βDM. This may not be the case if φ is
not invertible, as the following example shows.
Fig. 20. The Poincaré map of a cycle undergoing a sliding bifurcation is constant if
the cycle has a sliding segment, regardless of the discontinuity in the local map β .

Example. Consider a system with the state portrait depicted in
Fig. 20. In this case the map φ(x), describing the dynamics outside
B, has constant value for all x due to the sliding segment. Hence the
one-dimensional Poincaré map of the cycle is constant, regardless
of the form of map β .

Normal forms for the discontinuity maps of the scenarios in
Fig. 15 are found in the literature. A full review is found in [17],
andherewe reviewonly their analytic form. In the crossing–sliding
and switching–sliding bifurcations, we call x∗ the point where the
non-sliding segment of a periodic orbit hits the switchingmanifold.
In the grazing–sliding bifurcation, we call xmin the point along
a non-sliding segment of a periodic orbit (eventually continued
beyond the switching manifold) that minimizes the function h. In
the adding–sliding bifurcation, we call xmin the point along a non-
sliding segment of a periodic orbit (eventually continued beyond
the fold) that minimizes the function Lf1h. In all scenarios we
assume that f1 can be continued to h(x) ≤ 0. Then, the Taylor
expansions of the (zero-time) discontinuity maps βDM for the four
generic sliding bifurcations (in Fig. 15) can be written, to leading
order (omitting arguments), in the form:

• grazing–sliding,

βDM : x →


x if σ ≥ 0,

x +
(f2 − f1) h

Lf2h
if σ < 0, (25)

where σ(x) = h(xmin);
• crossing–sliding,

βDM : x →


x if σ ≥ 0,

x +

Lf1h

2 (f2 − f1)
2Lf2hL

2
f1
h

if σ < 0, (26)

where σ(x) = Lf1h(x
∗);

• switching–sliding,

βDM : x →


x if σ ≥ 0,

x +
2(Lf1h)

3

3(Lf2h)2(L
2
f1
h)2

Q if σ < 0, (27)

where σ(x) = −Lf1h(x
∗);

• adding–sliding,

βDM : x →


x if σ ≥ 0,

x −
9(Lf1h)

2

2(Lf2h)2L
3
f1
h
Q if σ < 0, (28)

where σ(x) = Lf1h(xmin);

and where

Q = qLf2h + (f1 − f2)Lqh, q = f1,xf2 − f2,xf1.

These discontinuity maps were derived for the first time in [66].
For cases obtained by reversing time in Fig. 15, where a cycle has a
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segment in the escaping region, the (set-valued) discontinuitymap
can be easily deduced. These discontinuity maps have been shown
to be differentiable in all except the grazing–sliding case, where
the map is piecewise smooth but continuous at the switching
boundary. As a consequence, if a Poincaré map is well defined, it
is smooth in all scenarios in Fig. 15 except grazing–sliding. When
the Poincaré map is smooth, the only expected topological effect
of the bifurcation is to change the number and type of segments
constituting the cycle. When the map is piecewise smooth and
continuous, then persistence, nonsmooth fold, and nonsmooth
period doubling scenarios are possible, and other invariant sets
can be involved in the bifurcation. The theory of bifurcations of
piecewise smooth continuous maps is as young and incomplete as
that of piecewise smooth flows, but some results are to be found
in the literature, for example in [77].

6.2.2. Existence of cycles
Here we explain in detail how the functions (21)–(24) can be

used to obtain the results of the previous section. Consider a cycle
O that, for a particular value γ̄ of the bifurcation parameter γ ,
undergoes a bifurcation as in scenarios B3, B4 or B5 (that is, it
touches a fold, a cusp, or a two-fold). The Poincaré map of the
cycle can be written as a composition of a local part β(x, γ ) and
a global part φ(x, γ ), as in Fig. 17. Both maps depend on the
bifurcation parameter γ and, if either φ or β is set-valued, then
so is the Poincaré map. Genericity conditions for B3, B4, and B5
require that all intersections away from the neighbourhood B be
transversal, and for B3 and B4, they require also that the cycle be
hyperbolic (this is not necessary in the case of a two-fold,where the
Poincaré map and its inverse are set-valued and hyperbolicity has
no meaning). These conditions ensure that, if φ or φ−1 is single-
valued, then it is smooth, since all intersections are transversal.
Similarly, if β or β−1 is single-valued, then it can be expressed
as the composition of one or two smooth functions, expressing
the flow near a tangency. Hence a composition of φ, β and their
inverses gives a function that is piecewise smooth, composed of
two smooth parts continuously adjoint.

Now consider the four functions (21)–(24). We have either that
one of these functions is single-valued near (x̄, γ̄ ), or both β and
β−1 are set-valued. Moreover, by the considerations above, if any
one of (21)–(24) is single-valued, then (x̄, γ̄ ) is in the zero set
of both its smooth parts. The Implicit Function Theorem can be
applied to each of the two smooth parts, smoothly extended in a
neighbourhood of (x̄, γ̄ ).

If either (21) or (22) is single-valued, then the hyperbolicity
of the cycle O at γ̄ implies that the Jacobian of (21) or (22) in
x is nonsingular. By the Implicit Function Theorem, O sits at the
intersection of two families of solutions, one for each smooth part
of β . The two families adjoin continuously, but can be defined
for values of γ on the same side of γ̄ , or on opposite sides. This
gives nonsmooth fold and persistence scenarios, as we see in the
next section. Since the path of x(γ ) is continuous, the set of orbits
beginning or terminating at x(γ ) has geometry near the tangency
as in Fig. 15. The direction of time is as in the figure if (21) is single-
valued, while time is reversed if (22) is single-valued.

If both (21) and (22) are set-valued, but (23) or (24) are single-
valued, then the cycle O has at least an escaping segment and is
touching the border of a sliding region in B, or it has a sliding
segment and touches a border of an escaping region in B. The
Jacobians in x of both φ or φ−1 and β−1 or β have a null space
that is, typically, one dimensional in the presence of sliding and
escaping segments. Unless these null spaces are orthogonal, the
Jacobian of (23) or (24) has a one-dimensional null space, which
means that either no solution exists for γ near γ̄ , or a one-
parameter family of solutions coexists at γ = γ̄ . The first case
corresponds to the scenario in Fig. 16(i). In the second case, a one-
parameter family of cycles has local geometry as in Fig. 15.

Finally, if none of (21)–(24) is single-valued, the Implicit
Function Theorem cannot be used.
Fig. 21. Example of a limit cycle destroyed in (i) a visible canard case with the
‘+’ sign from (29), and (ii) a simple canard case with the ‘−’ sign from (29), of
catastrophic sliding bifurcation in two dimensions. Two folds swap position as µ

changes sign. When µ = 0, the sliding and escaping regions are connected via
an orbit which passes through a degenerate-fold, and is called the ‘canard’ orbit.
Both of these have recently been found to play important roles during the ‘‘canard
explosion’’ in a singularly perturbed van der Pol oscillator, see [78], and their deeper
connection to singular perturbation phenomena is the subject of ongoing study.
Equilibria and pseudoequilibria are marked E and P .

6.2.3. B5: canards at a two-fold
Regarding the cases of catastrophic sliding bifurcations referred

to as canards in Fig. 16(ii)–(iv), nothing is known other than the
local geometry required for them to occur. No tools yet exist to
analyse them globally, but they have been shown in [78] to be
related to canards in singularly perturbed systems. This connection
is briefly discussed in Section 8.3, and motivates the terminology
applied to them in Fig. 16(ii)–(iv). These ‘nonsmooth canards’
effectively provide a classification of the different local forms
that ‘canard explosions’ (to use the terminology from singular
perturbation theory) can take.

Example. Consider the system in Fig. 21, with a switching bound-
ary h = x2, and where

f1 = (x1 + ωx2 − ω − ω−1, x2 − ωx1)
f2 = (±ω−1, x1 − µ),

(29)

where ω = 10. For µ > 0, a limit cycle with a sliding segment ex-
ists (see Fig. 21). There are two folds, at x = (0, 0) and x = (µ, 0),
which coincide when µ = 0 so that an orbit passes from sliding
to escaping; we call this orbit the canard. The tangency in f1 is vis-
ible, while the tangency in f2 is invisible or visible taking respec-
tively the + or − signs in (29). These are depicted in Fig. 21. For
µ < 0, in (i) all orbits are attracted to a pseudoequilibrium (P) in
the sliding region, and in (ii) all orbits end up in R2; in each case the
limit cycle has vanished via a simple (i) or visible (ii) canard case
of catastrophic sliding bifurcation. The fold that exists at µ = 0 is
non-generic, andwerewe to add a third dimension, itwould gener-
ically unfold to form a two-fold. From this association we see that
this is just an example of the two-dimensional analogue of the vis-
ible canard classified in Fig. 16.

6.3. Codimension-two bifurcations of equilibria

We are not aware of any analysis of bifurcations of type
B1.2–B1.4 from Section 5.2.1 that apply in a general number of di-
mensions (results limited to two dimensions are discussed in Sec-
tion 7.1), but some results exist regarding type B1.1. Nonhyperbolic
equilibria generically undergo a Hopf or saddle–node bifurcation
under one parameter variation. The case of a boundary equilib-
rium bifurcation simultaneous to a saddle–node of the pseudoe-
quilibrium has been recently studied in [64]. The local unfolding
exhibits a boundary-equilibrium bifurcation changing from persis-
tence to nonsmooth fold across the codimension two point, and a
saddle–node of pseudoequilibria adjoining the point tangentially
to the boundary equilibrium. The dual case, of a boundary equilib-
rium bifurcation simultaneous to a saddle–node bifurcation of the
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Fig. 22. Partial unfolding of the codimension-two sliding bifurcations of
nonhyperbolic limit cycles. (i): sliding bifurcation + fold; SB1 and SB2 are
sliding bifurcations the two cycles involved in the fold bifurcation. (ii): sliding
bifurcation + flip; SB1 and SB2 are the sliding bifurcations of the period-one and
period-two cycle respectively. (iii) sliding bifurcation + Neimark–Sacker; SB1 is
the sliding bifurcation of the cycle, NS is the Neimark–Sacker, and GR is a grazing
bifurcation of the torus. Bifurcation curves near any of these codimension-two
points must be arranged as in one of the three portraits. However, the presence
of other bifurcation curves, and the dynamics across the curves, depend on the type
of sliding bifurcation, and the complete unfoldings are still unknown.

equilibrium, has not been studied, but the analysis of the same bi-
furcation in the discrete-time case conducted in [79] suggests that
a similar unfolding should be expected. All other combinations are
still waiting to be explored.

6.4. Codimension-two bifurcations of limit cycles

Sliding bifurcations of Type I in Section 5.2.2 occur when
the tangency between the vector fields and the boundary is
degenerate. Referring to the genericity conditions in Section 5.1.2,
this can be a cusp point or a two-fold in case B3, and a fourth-order
tangency (L3

f1
h = 0) or a two-fold in case B4. The case of a grazing

with a cusp point or a fourth-order tangency is discussed in [80],
where the discontinuity-induced bifurcations that adjoin these
codimension-two points are listed, but only the unfolding of the
degenerate crossing–sliding is reported, while the unfolding of all
other cases is left undone. The case of other possible degeneracies,
which involve grazing at two-fold points, have not been analysed
to date.

A partial unfolding of all type II bifurcations is provided in [79],
for nonhyperbolic cycles undergoing a grazing with a boundary,
without further assumptions on the dynamics on the other side of
the boundary or on the geometry of the boundary. Intuitively, these
codimension-two points are the intersection of (at least) a sliding
bifurcation curve and a flip, fold, or Neimark–Sacker bifurcation
curve. The analysis in [79] retrieves the local geometry of these
curves near the codimension-two point (reported in Fig. 22) for
any of the sliding bifurcations admitted by the configurations in
Figs. 15 and 16, but it does not allow deduction of the complete set
of bifurcation curves, nor of the type of dynamics that surround
these curves. The complete unfolding of a single case, the fold case
of grazing–sliding, can however be deduced from the results in [81]
on the fold border-collision in a piecewise continuous map, since
the Poincaré map of a grazing–sliding cycle is indeed piecewise
smooth continuous. Interestingly, the onset of chaos after the
grazing is predicted.

A general analysis of Type III bifurcations has never been carried
out.

Finally, some codimension-two bifurcations of n-dimensional
piecewise continuous maps have been studied in [77,81,82],
and the results should apply to codimension-two grazing–sliding
bifurcations of cycles which, as seen in Section 5.1.2, induce a
piecewise smooth continuous Poincaré map.

6.5. Boundary-intersection crossing bifurcations

Aswe discussed in Section 5.3, themostwell studied boundary-
intersection bifurcations occur when a non-sliding segment of a
limit cycle reaches a boundary intersection. Local discontinuity
maps provide useful insights, just as they did in the absence of
boundary intersections. These maps have been obtained in [83,17]
in the absence of any sliding/escaping region near the boundary
intersection, and have been extended in the case of a single sliding
region, and provided no sliding occurs along the intersection [84].
In all cases, the discontinuity map has been found to be piecewise
smooth and continuous. This implies that, when a Poincaré map
can be defined, it is piecewise smooth continuous. The theory
of piecewise smooth continuous maps, discussed in [85,86,20,
73,87,88], predicts that the cycle can undergo nonsmooth fold,
persistence, and nonsmooth period doubling scenarios analogous
to those at a grazing–sliding bifurcation.

7. Specific results in Rn for n ≤ 3

In this section, we consider a few examples of phenomena
that are unique to piecewise smooth systems, but which have to
date eluded generalization to n-dimensions. All of these results are
obvious starting points for future work.

7.1. Planar Filippov systems

An extensive study of one parameter bifurcations in planar
Filippov systems is made by Kuznetsov et al. in [60]. Here the
authors consider a Filippov system where the switching boundary
Σ is simply a smooth curve. Depending on certain conditions
satisfied by the vector fields, there are four types of special
sliding points: singular sliding points, pseudoequilibria, boundary
equilibria and tangent points, which we will denote by T .

The approach taken in [60] is to propose different bifurcation
scenarios, and examine their topological detail. The scenarios
considered are stated to be generic, and assigned normal forms,
and a forthcoming paper [89] is intended to prove their genericity.
The different scenarios considered are:

1. codimension 1 local bifurcations
• collisions of a focus with Σ (boundary focus)
• collisions of a node with Σ (boundary node)
• collisions of a saddle with Σ (boundary saddle)
• collisions of tangent points
• collisions of pseudoequilibria

2. codimension 1 global bifurcations
• bifurcations of sliding cycles
• pseudo-homoclinic bifurcations
• pseudo-heteroclinic bifurcations

3. codimension 2 local bifurcations
• degenerate boundary focus
• boundary Hopf

4. codimension 2 global bifurcations
• grazing–sliding of a nonhyperbolic cycle.

The constructive approach taken to derive these has its limita-
tions, even in two dimensions. In the case of codimension 1 global
bifurcations, the authors in [60] considered bifurcations of cycles
which collide with Σ . They uncover the four familiar sliding bifur-
cations of grazing–sliding, adding–sliding, switching–sliding and
crossing–sliding (Fig. 15). But they donot find the catastrophic slid-
ing bifurcations (Fig. 16) described in [59], explicit planar examples
of which are shown here in Figs. 21 and 25; these also are not dis-
cussed generally in a forthcoming paper [89], but a case similar to
the ‘simple canard’ in Fig. 21 appears in [89] as part of the codimen-
sion two unfolding of a fold-cusp singularity. A direct inspection
of orbit configurations on either side of the switching boundary in
Fig. 21 reveals that these bifurcations must be present in the prob-
lem in general, hence it is legitimate to ask whether, in the other
cases considered in [60], the constructive approach may have left
other codimension-one bifurcations undiscovered.
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At present it is not known to what extent this work can be gen-
eralized, either to systems with boundary intersections, or with
n-dimensions. An obvious generalization is to a bimodal (two-
region) system in n-dimensions. In that case, the switching bound-
ary has n − 1 dimensions. Equilibria close to Σ can then take
a large number of different forms, depending on the eigenvalues
of the piecewise smooth vector field’s Jacobian. It is not immedi-
ately clear how any of these generalizations should be approached.
The classification of sliding bifurcations in Figs. 15–16 applies in
n-dimensions (see [59]) and therefore partially addresses the prob-
lem, but only away fromboundary intersections and equilibria. The
incompleteness of the classification of planar codimension-one bi-
furcations proposed in [60] reveals that piecewise smooth systems
have surprises to spare. While completing this remains an open
problem even in two dimensions, a more pressing need is to know
how current results can be applied in higher dimensions.

7.2. Generalized Hopf bifurcation

For a smooth system, a Hopf bifurcation occurswhen a complex
conjugate pair of eigenvalues crosses the imaginary axis. This
cannot occur at a switching boundary because of the impossibility
of linearizing the vector field across the discontinuity at the origin.
Strictly speaking, therefore, a Hopf bifurcation in a piecewise
smooth system can only occur if contained entirely within one of
the open regions Ri.

In this section we consider periodic orbits that bifurcate
from stationary solutions of Filippov systems. These have been
called generalized Hopf bifurcations [90–92] or discontinuity-
induced Hopf bifurcations [17,72]. The basic idea here has been to
characterize the generalized Hopf bifurcation as being given by the
change from stable focus to unstable focus via a centre in a basic
piecewise linear system, which takes the place of linearization in
the smooth case.

Again little work has been done to generalize these results to
arbitrary dimensions. Notable exceptions are restricted to the case
where the vector field is continuous across the switching surface.
For piecewise smooth continuous systems, [93] extends the idea
of an invariantmanifold to describe invariant cones for generalized
Hopf bifurcations, and Simpson andMeiss [92] prove the following
result:

Theorem 7.1 ([92]). Suppose that the system is continuous and
sufficiently differentiable, and that it has an equilibrium that crosses
the switching boundary at x = x∗ when µ = 0. As µ → 0+ the
eigenvalues of the equilibrium approach λL ± iωL, and as µ → 0−

they approach −λR ± iωR where λL, λR, ωL, ωR > 0. Define Λ =
λL
ωL

−
λR
ωR

. Then if Λ < 0, there exists ϵ > 0 such that for all
µ ∈ (0, ϵ) there is an attracting periodic orbit whose radius is O (µ)
away from x∗ and ∀µ ∈ (−ϵ, 0), there are no periodic orbits near
x∗. If Λ > 0, ∃ϵ > 0 such that ∀µ ∈ (−ϵ, 0) there is a repelling
periodic orbit whose radius is O (µ) away from x∗ and ∀µ ∈ (0, ϵ),
there are no periodic orbits near x∗.

The same authors emphasize the difference between this and
the smooth Hopf bifurcation. First, the generalized Hopf solution
is made up of two spiral segments; it is not elliptical. Second, the
growth rate is linear inµ, whereas it isO


µ1/2


in the smooth case.

Finally the criticality of the bifurcation is determined by the linear
term Λ, rather than by cubic terms.

A paper by Han and Zhang [94] studies the different ways in
which planar limit cycles can be produced from the three different
possible piecewise smooth foci. They base their results on previous
results of [95], but as before, the possibility of generalization to
higher dimensions is not obvious.

Simpson and Meiss [92] speculate why it might be difficult to
generalize their work to n-dimensions. The main challenge is that
Fig. 23. Double tangencies and sliding regions: the cusp in two dimensions. As
two tangencies on one side of Σ collide in a cusp, a region opens up between them.
Regions of crossing (dashed line) surround a region of escaping (full lines) in the
case of an invisible cusp, and a regions of escaping surround a region of crossing in
the case of a visible cusp. Reversing arrows changes escaping to sliding.

it is not clear how to obtain the required centremanifold reduction.
They also point out the important fact that, in higher dimensions,
an equilibrium on a switching boundary can be unstable even
when both Jacobians have all their eigenvalues in the left hand
plane, citing an example given in [96].

7.3. Bifurcations of the sliding boundaries

Section 3 provides a short overview on the geometry of the
boundaries of crossing, sliding, and escaping regions Σ . Clearly, a
perturbation of a system’s equations can in general alter this geom-
etry, therefore it is natural to consider some obvious topological
changes that occur at the boundaries: either at self-intersections
of the switching boundary Σ , or at the sliding boundaries on Σ .
Bifurcations concerning the geometry of boundary intersections
are mostly ignored in the literature. Topological changes of sliding
boundaries have received more attention, at least in two or three
dimensions (see [18,60,23]).

Degenerate tangencies give rise to structurally unstable sliding
boundaries, and when perturbed, these produce bifurcations that
create regions of sliding, escaping, or crossing. Consider for
instance the cusp, which, as noted in Section 3, is topologically
stable in three or more dimensions. We can consider (13) in the
two dimensional space of (x1, x2) and treat x3 as an unfolding
parameter. When x3 = 0, Σ consists of the cusp point surrounded
by regions of crossing if the cusp is invisible, and sliding/escaping
if the cusp is visible. As x3 passes through zero, a bifurcation takes
place that opens a region between the points x2 = ±

√
x3 on

x1 = 0, bounded by folds, one visible and one invisible. The normal
form (13) gives sliding if we take the ‘+’ signs and escaping if we
take the ‘−’ signs; the latter is illustrated in Fig. 23.

The same reasoning applies in the case of the two-fold. Its two-
dimensional counterpart is the ‘‘double fold’’, occurring when the
piecewise smooth flow has tangencies above and below Σ , which
exchange ordering as a parameter varies, given by a normal form

f1 = ±(s1 x2, 1),
f2 = ±(s2(x1 + 2x2 − µ), 1), (30)

where we can choose the ± signs on each row independently,
where s1,2 take values ±1 and µ is an unfolding parameter. The
two folds lie at x2 = 0 and x2 = µ/2, and their visibility depends
on s1 and s2 as in (14). Asµ changes sign, either a region of crossing
closes and re-opens and lies between sliding and escaping regions
(shown in Fig. 24 for the case with two visible folds) or a region
of sliding closes then a region of escaping opens, lying between
crossing regions. In each case a bifurcation has taken place as µ
changed sign. (We should remark that in [60] the double fold is
givenbydifferent normal formsdepending on the types of visibility
involved. However, (30) provides a single form giving the correct
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Fig. 24. Double tangencies and sliding regions: two folds in two dimensions. As a
pair of tangencies, one each side ofΣ , exchange ordering, a crossing region (dashed
line) opens upbetween twovisible folds, lying between sliding and escaping regions
(full lines). This corresponds to (30) with the ‘+’ signs and with s1 = −s2 = 1.

Fig. 25. Example of a periodic orbit destroyed in a catastrophic grazing–sliding
bifurcation. As a parameter µ changes we have: (i) a stable periodic orbit with a
sliding segment, (ii) the periodic orbit grazes a visible fold at the boundary of an
escaping region, (iii) no attractors remain.

topology for all cases, including pseudoequilibria and limit cycles
which we do not discuss here.)

Likewise, higher order degeneracies of tangency points will
cause bifurcations in two or more dimensions. Teixeira [23] has
considered four cases of one-parameter bifurcations of sliding
regions in three dimensional systems, called the dovetail (which
occurs at a fourth order tangency), the lips and beak-to-beak
(which occur at a degenerate form of the cusp), and the degenerate
two-fold (where two fold curves intersect non-transversally); each
of these will have topologically stable counterparts in four or more
dimensions, just as the planar cusp and double fold have stable
counterparts in three or more dimensions.

8. Where do we go from here?

In previous sections we have drawn together results that point
towards a general theory of discontinuity-induced bifurcations,
and efforts to this end are unlikely to have peaked. Pressing con-
cerns involve how to balance generality and rigour in classifying
nonsmooth systems, to avoid, for instance, semantic differences
obscuring dynamical similarities. When are two nonsmooth sys-
tems topologically equivalent, and when do they undergo bifurca-
tions? In spite of the results we have brought together here, these
are issues onwhich a consensus is yet to be reached. In this section
we briefly outline some promising directions for future progress.

8.1. Pinching and regularization

One way of dealing with a discontinuity on the righthand side
of the equation ẋ = f is to smooth it out. If f = f + for h < 0, and
f = f − for h > 0, we can approximate the discontinuity at h = 0
by a slope over |h| < ϵ, for some ϵ > 0, by writing

ẋ =
1 + φ(h(x)/ϵ)

2
f +(x) +

1 − φ(h(x)/ϵ)
2

f −(x), (31)

where φ(y) = −1 for y ≤ −1, φ(y) = +1 for y ≥ 1, and
φ(y) ∈ (−1, 1) for y < −1. Then (31) is called a regularization,
andφ is a transition function. Further smoothing can be convenient
for numerical simulations, giving φ a differentiable sigmoidal form
instead. Whatever the differentiability of φ, it is not known how
well regularization approximates the dynamics at a discontinuity.

It has been shown that, given the regularization of a piecewise
smooth system, a singularly perturbed system can be found that is
topologically equivalent [97], and in particular, that a sliding region
is then homoeomorphic to a normally hyperbolic slow manifold.
Results so far do not extend to points where a piecewise smooth
vector field is tangent to a switching boundary, which are likely
to be associated with a loss of hyperbolicity of a slow manifold.
Non-hyperbolic points commonly require the introduction of
artificial ‘‘blow-up’’ parameters, and their study is ongoing. In [78],
however, it was shown by a different method, called pinching,
that when slow manifolds are indeed approximated by switching
boundaries, their non-hyperbolic points are approximated by two-
fold singularities.

Pinching, which can be thought of as a converse to regulariza-
tion, was introduced in [98] and expanded upon in [78]. Pinching
approximates a smooth vector field by a discontinuous one, by col-
lapsing a region of state space to form a switching boundary. Let

ẋ = f (x) + g(x), (32)

where f and g are smooth functions of the state vector x =

(x1, x2, x3, . . .). Let ϵ be a positive constant, and let g(x) ≫ f (x)
for |x1| < ϵ, and f (x) ≫ g(x) for x1 > ϵ. We call |x1| < ϵ the pinch
zone. We then introduce a new coordinate y1 = x1 − ϵ sign(x1)
over the region x1 > ϵ, where g is negligible. This defines a new
state variable y = (y1, x2, x3, . . .), which satisfies

ẏ =


f +(y), if y1 > 0,
f −(y), if y1 < 0, (33)

where f ±(y) = f (y1 ± ϵ, x2, . . .), and where g ≪ f has been
neglected.

The result of pinching is that, at a point y = (0, x2, x3, . . .) on
the switching boundary, we have the differential inclusion

ẏ = {f (z) + g(z) : z = (ξ , x2, x3, . . .), ξ ∈ (−ϵ, ϵ)}. (34)

We can approximate the set-valued righthand side by an interpo-
lation between the values of f +g at ξ = ±ϵ, where g is negligible,
resulting in

ẏ ≈ {f +(y) + (1 − λ)f −(y) : λ ∈ (0, 1)} on y1 = 0. (35)

Then the system (33) with (35) is a Filippov system. Note that we
have derived this as an approximation to the smooth system (32),
replacing the dynamics in the region |x0| < ϵ where g dominates,
with dynamics at a switching boundary given by (35).

In [78] it was shown that pinching can be used to study
bifurcations in singularly perturbed systems, and is related to
the nonstandard analysis [99] approach to studying the highly
nonlinear phenomenon of canards. It is hoped that the concepts of
pinching and regularization will continue to give insight into the
correspondence of singularities and bifurcations between smooth
and piecewise smooth systems.

8.2. The notion of a sliding bifurcation

Among the most powerful concepts in bifurcation theory
is that of centre manifold reduction, whereby a bifurcation in
n-dimensions is reduced to a lower dimensional problem. Very
little has been achieved concerning centre manifolds in piece-
wise smooth systems. As a result, many bifurcations have been
described in planar systems, without much discussion of when a
given discontinuity-induced bifurcation in n-dimensions can be re-
duced to a planar problem.

An exception is given by the discontinuity mappings in Sec-
tion 6.2.1, which classify one-parameter sliding bifurcations us-
ing local geometry in lower dimensions, in the neighbourhood of a
switching boundary. The implication of Section 6.2 is that many
different discontinuity-induced bifurcations can be classified as
sliding bifurcations, provided they occur where orbits graze the
switching boundary, regardless of the object (such as a periodic or-
bit or invariant manifold) undergoing the bifurcation. This idea of
topological reduction is very different to, though in the spirit of,
centre manifold or normal form reduction.
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Fig. 26. Canards and two-folds: (i) a canard passes through a two-fold, from sliding
to escaping regions; (ii) a faux canard passes from escaping to sliding regions;
and (iii) a two-fold without canards. Sliding/escaping regions are shaded, crossing
regions are unshaded, and the boundaries between them are folds.

Theutility of the topological classification of sliding bifurcations
(Figs. 15–16) can be seen by their ability to predict previously
unknown global bifurcations. As an example, Fig. 25 (and our
earlier Fig. 21) illustrate codimension-one bifurcations of stable
limit cycles that have escaped classification until now, but which
are easily deduced from the geometry of catastrophic sliding
bifurcations. Fig. 25 consists simply of an unstable focus in the
upper vector field, with sliding and escaping on the rightmost and
leftmost parts of the switching boundary respectively. For µ > 0
a stable limit cycle with a sliding segment encircles an unstable
focus. For µ = 0 the cycle grazes the boundary of an escaping
region, and a catastrophic grazing–sliding bifurcation takes place.
Then, for µ < 0, inspection of the state portrait reveals that no
limit cycles can exist, and all orbits eventually end up below the
switching boundary.

These bifurcations can equally well occur in higher dimensional
systems, or those with more complex switching boundary topolo-
gies.

8.3. A pivotal point: the two-fold singularity

Two-fold singularities were proposed in [18,22] to be of
fundamental importance if piecewise smooth dynamical systems
theory was to venture beyond the plane. Their importance lies in
allowing orbits to pass from attracting to repelling regions of state
space, that is, from sliding to escaping regions (noting that the
attraction/repulsion is strong in the sense that it is not asymptotic,
but takes place in finite time). Such orbits are called canards, see
Fig. 26.

In [78] it was shown that canards at two-folds (as in Fig. 16)
are not only consistent with the canards familiar in singularly
perturbed systems [99,100], indeed they can be derived as
approximations to them, and furthermore reveal that canard
explosions are examples of catastrophic sliding bifurcations.

Canards can have local consequences too, as are revealed
at the invisible two-fold, which was dubbed the ‘‘Teixeira
singularity’’ in [65]. Since the far reaching work of Filippov [18]
and Teixeira [22], the Teixeira singularity has continued to reveal
novel local dynamics [35,63,65], and remains a subject of ongoing
interest. When the Teixeira singularity exhibits a faux canard,
orbits locally wind around the singularity only a finite number of
times before entering the sliding region. In [65], a ‘‘nonsmooth
diabolo’’ bifurcation was derived, whereby an invariant double
cone self-annihilates, and turns faux canards into canards, see
Fig. 27. Analysis of higher order terms near the bifurcation, in [63],
has shown that, for certain parameters, orbits locally begin and end
at the singularity via escaping and sliding segments that lie along a
canard. Locally, solutions in the flow therefore visit the singularity
recurrently, but become non-unique each time they traverse the
two-fold. This means that the trajectory of an orbit leaving the
singularity is not determined by how it entered, and the resulting
behaviour exhibits a non-deterministic formof chaos. In particular,
the study of canards from the piecewise smooth perspective [78]
is quite new, and in spite of a proof that Teixeira singularities can
Fig. 27. The two-fold and non-deterministic chaos. For certain parameters the two-
fold takes the form depicted, with a pseudosaddle in the escaping region and a
family of canards passing through the two-fold. The folds are both invisible. The
dotted curves are the paths followed by non-sliding orbit segments on successive
crossings. A typical orbit is shown: orbits locally wrap around the singularity, and
after finitely many crossings they slide, following a canard through the two-fold.
The outward trajectory through the escaping region is not uniquely determined, yet
wherever the orbit emerges, it again begins winding around to the sliding region
and hence to the two-fold, to be ejected again in an undetermined direction. The
resulting dynamics is chaotic but non-deterministic.

occur generically in control systems [35], they have not yet been
identified in specific applications. These novel types of behaviour
are deserving of further study in three dimensions and beyond.
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